The Big, Wonderful Immune System

Basics of Immunology

Heidi Gurov, RN, BSc, BSN, CMSRN Nurse Consultant 2025 Wyoming Immunization Conference

Today we'll learn...

- General anatomy and function of the human immune system
- Types of immunity
- Immune system dysfunctions
- Basics of vaccinology

Definitions

Definitions

- Immunology: the study of molecules, cells, organs, and the system responsible for the recognition and disposal of nonself (foreign) substances.
 - Relatively new area of science that branched off from microbiology
 - Louis Pasteur is considered the "father of immunology"
 - Immunology "took off" in the 1960s and 1970s

- Immunity: a condition of being able to resist a particular disease, especially through preventing development of a pathogenic microorganism or by counteracting the effects of its products
 - O Concept of immunity from disease dates back to Greece in the 5th century BCE

Definitions

 Vaccine: a preparation that is used to stimulate the body's immune response against a specific disease

 Vaccination: the act of introducing a vaccine into the body to produce protection from a specific disease

- Immunization: the process by which a person becomes immune to an infectious disease
 - O This term is often used interchangeably with vaccination

The Immune System

What is the immune system?

The immune system is awesome!!!

What is the immune system?

 A complex system of interacting cells that identifies foreign substances ("antigens") and develops a defense against those substances

Immune System

Antigen

- Substance capable of producing an immune response
- Recognized as "non-self," or foreign
- Two types:
 - Exogenous
 - Come from outside of the cell or body
 - Examples: pollen, transplanted organs, microorganisms
 - Endogenous
 - Produced within our own cells
 - Examples: viruses, products from normal cell metabolism

Immunity

Immunity

- Two key principles:
 - Specificity
 - O Memory
- Two types of immunity:
 - Innate
 - Adaptive
 - Passive & active

Innate Immunity

- Anatomical barriers
 - Can be physical or chemical barriers
 - O Examples: skin, mucous membranes, saliva, and tears
- Cellular responses
 - O Phagocytic, dendritic, and natural killer cells
- Soluble proteins
 - O Complement components, cytokines, lysozyme, and interferons
- Inflammatory responses
 - o Fever
- Cough reflex, sneezing

Adaptive immunity

- Types:
 - Humoral & cell-mediated
 - Active & passive
- High degree of specificity with memory
- Self/non-self recognition
- Not independent from innate immunity
 - In fact, poorly effective without innate immunity components

Humoral immunity

- Important against bacteria, parasites, toxins, and extracellular virus particles
- B lymphocytes
 - Mature in the bone marrow
 - Memory B cells
 - Long lifespan
 - Membrane-bound antibodies
 - Effector B cells (plasma cells)
 - Antibodies are secreted
 - Live only a few days
- Antibodies
 - Also called immunoglobulins
 - A Y-shaped protein with antigen binding sites
 - o 5 types

Antibodies

- IgA
 - Found on mucous membranes, and in saliva, tears, and breastmilk
 - Important first line of defense against certain pathogens
- IgD
 - Antigen receptor found on mature B cells
 - Activates basophils and mast cells to produce antimicrobial factors
- IgE
 - Important in parasitic worm infections
 - Key in hypersensitivity reactions and triggers histamine release

Antibodies

- IgG
 - Most abundant type of antibody
 - Forms majority of antibody-based immunity
 - Crosses the placenta during pregnancy
- IgM
 - First type of antibody produced during a primary immune response

Primary vs. secondary immune response

- Primary response
 - Initial encounter with an antigen
 - o 5-7 days for response
- Secondary response
 - Later contact with an antigen
 - Immune system recognizes antigen and responds swiftly and specifically
 - O 1-2 days for response
 - Antibody levels are higher and sustained for longer than primary response

Cell -m ediated im m unity

- Important against virus-infected cells, cancer cells, and transplanted cells
- Does not involve antibodies, but instead the activation of various immune cells in response
- T-lymphocytes
 - Arise in the bone marrow, but mature in the thymus
 - o T-helper CD4 cells
 - Recognizes and interacts with antigenmolecule complexes
 - B cells and an antigen, for example
 - Becomes activated and secretes cytokines
 - T-cytotoxic CD8 cells
 - Exhibit cell-killing activity once activated

the Awkward Yeti.com

Putting it all together...

Humoral response: Part 1

Humoral response: Part 2

Cell -m ediated response

- Antigen presenting cells
 - o B cells
 - Macrophages
 - Dendritic cells
 - Langerhans cells
- Major Histocompatibility Complexes (MHC)
 - Class I: found on the surface of all nucleated cells
 - CD8 T-cytotoxic cells
 - Kills virus-infected cells, cancer cells, and intracellular bacteria
 - Class II: found on the surface of antigen presenting cells
 - CD4 T-helper cells
 - Extracellular antigens

Passive vs. active immunity

- Passive immunity
 - Protection derived from products by an animal or human that are transferred to another human
 - Protection wanes, often within a few weeks to months
 - Most common forms:
 - Maternal antibodies
 - Blood products
 - Pooled antibodies
 - Antitoxins
 - Monoclonal antibodies
 - Example: nirsevimab for RSV

Passive vs. active immunity

- Active immunity
 - Protection produced by your own immune system
 - Lasts for many years, sometimes a lifetime
 - Memory B cells circulate in blood and reside in bone marrow
- Two types:
 - O Survive the infection from the disease-causing organism
 - Vaccination

Immune System Dysfunction

When things go wrong...

- Immune system dysfunction
 - Hypersensitivities
 - Immunodeficiencies
 - Autoimmune disorders
- Play a role in immunization
 - Inability to receive a particular vaccine (contraindication)
 - Reduce immune response
 - Vaccine recommendations due to health condition or immunodeficiency

Hypersensitivities

- Commonly known as an "allergy"
- Occurs when the immune system mistakenly identifies a generally harmless substance as harmful
- Is not necessarily a "heightened" response, but is an inappropriate immune response to an antigen
- 4 types

Type 1 hypersensitivities

- Also called IgE-mediated hypersensitivity
- Causes an immediate response after exposure to the triggering antigen
- Immune system responds by producing IgE antibodies
 - O These IgE antibodies binds to tissue mast cells and basophils
- Reaction can be systemic or localized
- Antigens
 - O Examples: foods, animal sources (ex: cats, dogs, bee stings), mold, latex, and dust
- Two stages:
 - Sensitization stage
 - Person encounters the antigen but does not experience any symptoms
 - Effect stage
 - The person has a repeat exposure to the antigen and symptoms occur that are typical of allergic reactions
- Treatments include epinephrine, systemic glucocorticoids, antihistamines, immunotherapy, anti-IgE monoclonal antibodies

Type 2 hypersensitivities

- Also called antibody-mediated cytotoxic hypersensitivity
- Causes cytotoxic reactions, meaning healthy cells die as antibodies activate the complement system
- Can cause long-term damage to cells and tissues
- Transfusion reactions, hemolytic disease of the newborn, and drug-induced hemolytic anemia
- Treatment usually involves:
 - Immunosuppressants
 - Systemic glucocorticoids
 - O IV immunoglobulin infusions
 - Plasmapheresis

Type 3 hypersensitivities

- Also called immune complex-mediated hypersensitivity
- Antigens and antibodies form complexes in the skin, blood vessels, joints, and kidneys, leading to tissue damage due to complement activation and inflammatory response
- Common causes:
 - Drugs that contain foreign serum, such as antivenom, antitoxins, and anti diphtheria serum
 - Certain infectious diseases
 - Insect stings or tick bites
- Can lead to serum sickness, lupus, rheumatoid arthritis, smallvessel vasculitis, poststreptococcal glomerulonephritis, among others
- Treatment options typically involves controlling the underlying condition

Type 4 hypersensitivities

- Also called delayed-type hypersensitivity
- Reaction is cell-mediated
- Reaction begins with a sensitization phase, 1-2 weeks after primary contact with an antigen
 - O Subsequent exposure to the antigen induces a response about 24 hours after contact
 - O In many cases, tissue damage is limited and may be protective
- Three types:
 - Contact dermatitis
 - Tubercular lesions
 - Graft rejection
- Common causes:
 - O Poison ivy & oak
 - Nickel
 - Hair dye
 - O Intracellular bacteria, fungi, parasites, and viruses
- Treatment depends on cause

Immunodeficiency

- The immune system's ability to fight infections and cancer is compromised or entirely absent
- Two types:
 - Primary
 - Secondary
- A person who has an immunodeficiency is said to be "immunocompromised"
 - May be more vulnerable to opportunistic infections
 - May be vulnerable to routine infections that can affect anyone, with greater possibility of severe complications
 - O Decreased cancer immunosurveillance
 - Reduced protection from vaccines

Primary immunodeficiency

- Disorders in which part of the immune system is missing or does not function properly
- Not caused by secondary factors such as disease, drug treatment, or environmental exposures
- Most are genetic disorders
- About 1 in 500 people in the U.S. are born with a primary immunodeficiency
- Can result in persistent or recurring infections, autoinflammatory disorders, tumors, and disorders of various organs

Secondary immunodeficiencies

- Also called acquired immunodeficiency
- Causes include:
 - Malnutrition
 - Aging
 - Medications
 - Chemotherapy, disease-modifying therapies (DMTs), anti-rejection immunosuppressants, and glucocorticoids
 - o Toxins
 - Heavy metals, mercury, pesticides, petrochemicals
 - Cancers of the bone marrow and blood cells
 - Leukemia, lymphoma, multiple myeloma
 - Certain infections such as HIV
 - O Smokers, alcoholism, and drug abuse

Managing & treating immunodeficiencies

- Managing & preventing infections
 - Antibiotic therapy
 - Vaccination
 - Live vaccines may be contraindicated
 - Immunoglobulin (IVIG) replacement therapy
- Hematopoietic stem cell transplantation (HSCT) and gene therapy
 - Primary immunodeficiencies
- In secondary immunodeficiency, removing or resolving the underlying cause if possible

Autoimmune disorders

- Immune system is more active than it should be and attacks the body's own healthy tissues and organs
- Can be mediated by autoantibodies, T cells, antigen-antibody complexes, or immune complexes
- Chronic conditions
- More than 100 different autoimmune disorders have been identified
 - Examples: rheumatoid arthritis (RA), lupus, psoriasis, Crohn's disease, celiac disease, ulcerative colitis (UC), type 1 diabetes, Hashimoto's thyroiditis, multiple sclerosis (MS), and myasthenia gravis
- 1 in 15 people in the U.S. has an autoimmune disorder

Autoimmune disorders

- Exact cause is unknown
 - O Triggers may include:
 - Viral infections (including COVID-19 and Epstein-Barr virus)
 - Female
 - 80% of those living with an autoimmune disorder are female
 - Having biological relatives with autoimmune disorders
 - Having another autoimmune disease
 - Exposure to chemicals, pollution, or other environmental factors
 - Smoking
 - Vitamin deficiencies (such as vitamin D)
 - Geographical location (such as higher latitudes)

Autoimmune disorders

- Treatment depends on the particular condition
 - O For example, type 1 diabetes need insulin therapy and people with celiac disease need a gluten-free diet
 - O Common treatments to manage symptoms and progression of disease include:
 - Pain relievers
 - Immunosuppression
 - DMTs, glucocorticoids
 - Secondary immunodeficiency may occur
 - Physical and occupational therapy
 - IVIG infusions
- Most autoimmune diseases have no cure and require lifelong management

Vaccines

Vaccination

- Active immunity without the risk of the actual disease
- Two types of vaccines
 - Inactivated
 - Live, attenuated
- General rule
 - O The more similar a vaccine is to the disease-causing form of the pathogen, the better the immune response is to the vaccine
- Factors influencing the immune response to vaccines
 - Maternal antibodies
 - Dose of antigen
 - Route of administration
 - O Use of adjuvants
 - O Host factors

How do vaccines work?

- Introduces the body to an ingredient that mimics the appearance or behavior of a pathogen
 - O The "antigen"
- Antibodies are created
- If the pathogen is encountered, the immune system can quickly respond as it will recognize the antigen

Inactivated vaccines

- Cannot cause any form of disease
- Less affected by circulating antibody
- Always require multiple doses to induce an immune response
- Mostly a humoral response
- Antibody titers will diminish with time in most cases
 - O This is called "waning"

Types of inactivated vaccines

- Whole cell: contains whole bacteria or viruses that have been killed through a physical or chemical process
 - O Polio, hepatitis A, rabies, and whole-cell pertussis
- Subunit, recombinant, polysaccharide, and conjugate: use specific pieces of the pathogen, like its protein, sugar, or capsid
 - Create a strong immune response that is targeted to key parts of the germ
 - May need boosters for ongoing protection
 - O Hib, hepatitis B, HPV, acellular pertussis, pneumococcal disease, meningococcal disease, COVID-19, and shingles

Types of inactivated vaccines

- Toxoid: use a toxin made by the pathogen that causes a disease that has been made harmless
 - Immune response is targeted at the toxin
 - O May require booster shots for ongoing protection
 - O Diphtheria and tetanus
- Messenger RNA (mRNA): mRNA created in a laboratory teaches cells how to make a protein that triggers an immune response
 - O The mRNA is broken down within a few days after vaccination
 - O COVID-19, RSV
- Viral vector: use a modified version of a different virus as a vector to deliver instructions to stimulate an immune response
 - O Ebola Zaire

Live, attenuated vaccines

- A virus or bacteria is weakened using laboratory techniques
- Must grow and replicate in a vaccinated person
 Fragile
- Humoral and cell-mediated response occurs
- Usually produces immunity with one dose
- Vulnerable to interference from circulating antibodies
- Cannot be used in immunocompromised persons

Live, attenuated vaccines

- Measles, mumps, rubella (MMR)
- Varicella
- Rotavirus
- Intranasal influenza
- Yellow fever
- Vaccinia (smallpox ACAM2000)
- Oral typhoid
- Oral polio

What's in a vaccine?

Vaccine components

- Antigens
 - O Stimulates the immune response towards the specific pathogen
 - As vaccine technology advances, vaccines contain less and less antigen
- Stabilizers
 - Maintains effectiveness in storage
 - o MgCl₂, MgSO₄, lactose-sorbitol
 - Gelatin
 - Most is porcine in origin, but may be bovine
- Antibiotics
 - Help prevent bacterial contamination during the manufacturing process
 - Neomycin, streptomycin, polymyxin B, chlortetracycline, and amphotericin B
 - Rarely cause human allergies

Vaccine components

- Adjuvants
 - Help stimulate the production of antibodies against the antigen
 - O Makes vaccines more effective by enhancing, accelerating, and prolonging the immune response
 - O Allows for fewer doses of the vaccine to be given
 - Important in inactivated vaccines
 - Several hundred different types
 - Aluminum
 - Monophosphoryl A
 - QS21
 - Squalene

Vaccine components

- Preservatives
 - Added to multi-dose vials to prevent microbial growth
 - Phenol, benzethonium chloride, 2-phenoxyethanol currently used in the U.S.
 - O Thimerosal has not been in routine childhood vaccines since the late 1990s
- Formaldehyde
 - Used to inactivate viruses and detoxify bacterial toxins

Questions?

Thank you!

Heidi Gurov, RN, BSc, BSN, CMRN heidi.gurov@wyo.gov 307-777-8981

